Fundamental chemical reactions have often been named after their discoverers/developers. They represent a foundation in organic chemistry and help to set up complicated syntheses. As a contract manufacturer of "small organic molecules" and polymers, ChemCon is naturally involved in the development of syntheses and the transfer of syntheses from the laboratory to a larger scale (upscaling). These naming reactions, all of which have already been applied in ChemCon laboratories, are one of the chemical bases for our synthetic work.
A list of name reactions is given here, which is extended weekly. In this way, a reference work is developing that is not only intended to help students.
Osman Achmatowicz was born in Belarus on April 16, 1899. He finished school, including his high school diploma, in Saint Petersburg and studied afterwards at the Stefan Bathory University in Vilnius, where he also belonged to the oldest Polish student fraternity "Konvent Polonia".
He was elected both a member of the Polish Academy of Scholarship and a member of the Warsaw Scientific Society. In 1960, he received an honorary doctorate from the Łódź University of Technology.
The Achmatowicz reaction developed in 1971 was named after him.
In acyloin condensation, two esters react to form an acyloin. R1 and R2 are organyl radicals.
Mechanistically the 1st ester reacts with sodium, which enables the reaction, forming a radical anion. This anion reacts with the radical anion formed from the other ester to form a dianion. Cleavage of two alcoholate residues (R2O-) forms a diketone, which is reduced with excess sodium to form a dianion. This dianion is then hydrolyzed upon aqueous workup to the α-hydroxyketone, acyloin.
Charles Adolphe Wurtz and Alexander Porfyrech Borodin independently discovered this type of reaction at the end of the 19th century.
Charles Adolphe Wurtz was a French chemist and physician. He was born in Strasbourg in 1817. During his medicine studies, he became very interested in clinical chemistry. Wurtz went to Giessen to work for Justus Liebig for a year, then he returned to Paris. Wurtz was engaged in organic chemistry, especially organic nitrogen compounds. At the famous Sorbonne, Wurtz was the first professor of organic chemistry. The Wurtz-Fittig synthesis is another name reaction in which Charles Adolphe Wurtz collaborated.
Alexander Porfyrech Borodin was a Russian composer, professor of organic chemistry, and physician. Bordi was born in St. Petersburg in the early 19th century. Musical talent and a good musical education made him learn several instruments. In 1850 he began his studies in medicine and in 1859 in chemistry. Already at the age of 29, Borodin received a professorship in organic chemistry. Borodin also conducted research in the field of fluorine compounds.
Appel Reaction
Rolf Appel was born in Hamburg in 1921 and studied chemistry at the Martin Luther University Halle-Wittenberg. He received his doctorate in 1951 from the chemist Margot-Becke-Goehring. After graduating, he took over a chemistry chair at the University of Bonn in 1962.
It was a great honor for him to receive the Liebig-Denkmünze in 1986. He has become known for the reaction named after him.
Adolf von Baeyer was born in Berlin in October 1835, the 5th of 7 children. After graduating high school at the Friedrich-Wilhelms-Gymnasium, he studied mathematics and physics at the Friedrich-Wilhelms-University in Berlin and chemistry at the Ruprecht-Karls-University in Heidelberg.
Adolf was a founding member of the "Deutsche Chemische Gesellschaft" (German Chemical Society) in Berlin, which published the technical journal "Berichte der Deutschen Chemischen Gesellschaft" (Reports of the German Chemical Society).
On his 50th birthday, he was raised to hereditary nobility by King Ludwig II of Bavaria and received the title "von".
The Bayer indole synthesis was discovered in 1869 by Adolf von Baeyer and Adolphe Emmerling.
In 1905, von Baeyer won the Nobel Prize for his work on organic dyes.
Victor Villiger was born in 1868 on Lake Zug in Switzerland. After leaving school, Villiger studied chemistry at the University of Geneva before being drafted into military service.
In 1890, he transferred to the University of Munich, where he later earned his doctorate with a thesis on Hexahydroisophthalic acid. It was at this time that he met his mentor Adolf von Baeyer at the university. The two worked together for 11 years and jointly developed the Baeyer-Villiger oxidation between 1899 and 1900.
Adolf von Baeyer was born in Berlin in October 1835, the 5th of 7 children. After graduating high school at the Friedrich-Wilhelms-Gymnasium, he studied mathematics and physics at the Friedrich-Wilhelms-University in Berlin and chemistry at the Ruprecht-Karls-University in Heidelberg.
Adolf was a founding member of the "Deutsche Chemische Gesellschaft" (German Chemical Society) in Berlin, which published the technical journal "Berichte der Deutschen Chemischen Gesellschaft" (Reports of the German Chemical Society).
On his 50th birthday, he was raised to hereditary nobility by King Ludwig II of Bavaria and received the title "von".
Antoine Béchamp was born in France in 1816, but went to Bucharest with his uncle when he was only seven years old. He began an apprenticeship as a pharmacist, which he finished a few years later in France. After he founded his own pharmacy, he worked also at the pharmacy school in the fields of chemistry, physics and toxicology. During this time he met the chemistry professor Louis Pasteur, to whom he dedicated his doctoral thesis in chemistry. Based on this work, he developed his Béchamp reduction in 1852, which contributed to the rise of the paint industry.
Arthur Birch was born in Sydney, Australia, in 1915. He studied at the University of Sydney, where he received a Bachelor of Science degree in 1937 and a Master of Science degree in 1938. In 1940, he received his doctorate from the University of Oxford/UK. In 1952, Birch accepted a professorship in organic chemistry at the University of Sydney. In 1958, he moved to the UK again to take up a professorship at the University of Manchester. From 1967 to 1980, Birch was dean at the Australian National University of Canberra.
Birch's reduction made it possible to chemically synthesize a steroid for the first time, which is still of great importance to the pharmaceutical industry today.
Arthur C. Cope
...was a US-American chemist and professor of organic chemistry at the Massachusetts Institute of Technology (MIT) in Cambridge.
He received his PhD with the topic “The synthesis of local anesthetics containing various phenylalkyl groups: Vinylethyl malonic ester and the cleavage of certain substituted malonic esters with sodium ethoxide” at the University of Wisconsin–Madison in 1932.
During World War II, he conducted a series of researches for chemical weapons, anti-malaria compounds and the treatment of mustard gas victims.
At the MIT, he headed the chemistry department starting in 1945. The preparative organic chemistry was one of his fields of work, especially elimination and condensation reactions. Due to this the cope rearrangement, Diaza Cope rearrangement and Cope elimination were named after him.
Otto Paul Hermann Diels and Kurt Alder:
Diels was born in Hamburg and moved with his family to Berlin, where he studied chemistry. He remained at the University of Berlin until 1915, when he accepted a position at the University of Kiel, where he remained until his retirement in 1945. It was during his time at Kiel, where he worked with Kurt Alder developing the Diels–Alder reaction.
Alder was born in the industrial area of Königshütte, Silesia. When Königshütte became a port of Poland he moved to Berlin. He made his PhD in Kiel where he met Mr. Diels. Alder received several honorary degrees and other awards, such as the 1950 Nobel Prize in Chemistry, which he shared with his teacher Diels for their work on the Diels–Alder reaction.
1850 Friedel studied science in Strasbourg and, after an interruption; he continued his studies at Sorbonne in 1852. From 1856 to 1870, he worked as curator of the mineral collection of the École des Mines. During this time, he deepened his chemical knowledge under Charles Adolphe Wurtz in the laboratory of the École de médecine. In 1861, Charles Friedel and James Mason Crafts met here. After James earned a Bachelor of Science degree (1858), further studies took him to the Freiberg Mining Academy in 1859, to the University of Heidelberg in 1860 and to the École de Médecine in Paris in 1861. In 1877, they discovered the catalytic effect of aluminum chloride in reactions of aromatics with alkyl halides, today known as Friedel-Crafts reactions.This is a fundamental reaction that every chemist learns and which is also carried out in the ChemCon laboratories.
Victor Grignard:
Failed entrance exams for mathematics – Served in the military - Nobel Prize winner for Chemistry
Although he initially failed the entrance exam, he tried again after a year in the military and was successful. This was not enough for him and he switched to chemistry.
Due to Dr. Grignard, who received the Nobel Prize for Chemistry in 1912 (together with Mr. Paul Sabatier), it is nowadays possible to perform syntheses with advanced methods in organic chemistry.
Grignard published around 170 scientific articles about his work and worked on a large chemical encyclopedia in French until his death.
Even if he faced a challenge at the beginning, he never gave up.
Heinrich Emil Albert Knoevenagel...
..., born in Hannover, was a German chemist.
After studies in Hannover and Göttigen he got his PhD In 1889. Knoevenagel followed Victor Meyer to Heidelberg and became his assistant there. He habilitated in Heidelberg in 1892 with the topic of "asymmetric carbon". Emil Knoevenagel works at the University of Heidelberg as a Professor and works on nitrogen-heterocycles compounds. The preparation of unsaturated carbonyl compounds is named after him as the Knoevenagel reaction. A special example of Aldol condensation.
Arthur Michael...
... was an American chemist who never actually graduated the university. He acquired his knowledge of chemistry through to local teachers in his private laboratory, as he was unable to study at Harvard due to illness. He acquired further knowledge by visiting well-known chemists when he traveled to Europe. At Tufts College, he met his wife and worked as a professor of chemistry. In 1912, he went to Harvard University, where he served as a professor without lecture duties until 1936, despite the fact that he never earned a university degree. Nowadays, Arthur Michael is mainly known for the Michael Addition, which is named after him.
Barry Sharpless studied at Darthmouth College. In 1968 he earned his Ph.D. in Organic Chemistry at Stanford University.
Together with William S. Knowles and Ryoji Noyori, Sharpless received the Nobel Prize in Chemistry for their work on stereoselective oxidation reactions in 2001. 21 years later, in 2022, he received his second Nobel Prize in Chemistry (for fundamental work in click chemistry) together with Carolyn Bertozzi and Morten Meldal. This makes him, besides Frederick Sanger, the only person who has been awarded with the Nobel Prize in Chemistry twice.
Frederick Nye Tebbe…
… was an organometallic chemist who published the so called Tebbe’s reagent which is usable to introduce a methylen group instead of a carbonyl functionality.
Tebbe was born in Oakland, California. He studied chemistry and received a bachelor's degree at Pennsylvania State University.
After the chemistry studies he went at Montana State University studying psychology and philosophy for a year. In 1965 he was hired by DuPont Central Research Department, where he developed Tebbe’s reagent which was named in that way by Robert Grubbs (Nobel Prize 2005).
Fritz Ullmann was a German chemist.
He studied at the University of Geneva, where he also received his PhD in 1895. At the Technische Hochschule Berlin he lectured technical chemistry from 1905 to 1913 as private lecturer and from 1922 to 1925 as an associated professor.
From 1914 to 1922, he published the first edition of the Encyclopedia of Industrial Chemistry in 12 volumes, under the name “Encyclopedia of Industrial Chemistry” a standard work that is still constantly updated.
He discovered some important preparative synthesis methods like the synthesis of diarylamines, synthesis of carbazoles and of course the Ullmann reaction, which we present you here.
Georg Friedrich Karl Wittig:
Wittig was a German chemist and Nobel Prize winner. Because of his family background, he was very talented artistically. He played the piano, composed and painted very well. However, his love was chemistry. Although he was drafted in the middle of his chemistry studies and became a prisoner of war, he continued his studies as soon as he was free.
By means of the Wittig reaction, carbon-carbon double bonds can be formed. This involves the use of a carbonyl compound and a phosphonium ylide, with the carbonly oxygen substituted for the carbon.